On compactness of some integral operators with Cauchy kernels

Show simple item record

dc.contributor.author Moloșnic, Petru
dc.contributor.author Neagu, Vasile
dc.date.accessioned 2020-04-06T15:24:27Z
dc.date.available 2020-04-06T15:24:27Z
dc.date.issued 2018
dc.identifier.citation MOLOŞNIC, Petru, NEAGU, Vasile. On compactness of some integral operators with Cauchy kernels. In: Acta et Commentationes, Exact and Natural Sciences. 2018, nr. 2(6), pp. 117-123. ISSN 2537-6284. en_US
dc.identifier.issn 2537-6284
dc.identifier.uri http://localhost:8080/xmlui/handle/123456789/2626
dc.description P. Moloșnic Universitatea Agrară de Stat din Moldova; V. Neagu Universitatea de Stat din Moldova en_US
dc.description.abstract In this paper, it is proved that the integral operator S*-S is compact if the contour of integration is of the Lyapunov type. An example is brought to show that this property of the operator S*-S becomes false if the contour of integration has angular points.REZUMAT. În lucrare se demonstrează că operatorul integral singular S*-S este compact în cazul în care conturul de integrare este de tip Lyapunov. Se construește un exemplu care arată că proprietate operatorului S*-S devine falsă dacă conturul are puncte inghiulare. en_US
dc.language.iso en en_US
dc.subject operator integral singular en_US
dc.subject operator compact en_US
dc.subject contur Lyapunov pe porțiuni en_US
dc.subject singular integral operator en_US
dc.subject compact operator en_US
dc.subject piecewise Lyapunov contour en_US
dc.title On compactness of some integral operators with Cauchy kernels en_US
dc.title.alternative Asupra compacticității unor operatori integrali cu nuclee de tip Cauchy en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Browse

My Account